

CS 491 Senior Design Project I

Low Level Design Report

Project short-name: Pigeon’s Map

Berdan Akyürek 21600904

Ömer Olkun 21100999

Tanay Toksoy 21703919

Abdullah Ayberk Görgün 21201986

Ekin Üstündağ 21602770

Supervisor: Özcan Öztürk

pigeon-s-map.github.io

1. Introduction 3
1.1 Object design trade-offs 3
1.2 Interface documentation guidelines 3
1.3 Engineering standards 4
1.4 Definitions, acronyms, and abbreviations 4

2. Packages 4
2.1 Model 4
2.2 Activities 5

3. Class Interfaces 5
Activities 8

4. Glossary 10

5. References 11

1. Introduction

Choosing an efficient path to a destination point is usually not easy. If there are

multiple destinations, it is even more complicated. Postal workers have to think of tracks with

various delivery points every day, and if they choose a path that is close to the optimal

option, they can save both time and fuel.

Moreover, the Covid-19 pandemic increased the number of online orders, so more

packages are delivered [1]. Being more efficient is essential nowadays due to the increased

workload.

Anyone can use Pigeon’s Map to find an efficient path, but it mainly helps postal

workers find efficient routes in their delivery with multiple destinations. This android

application takes a start point and multiple goals with priorities to find a delivery order with

the shortest distance in total. Pigeon’s Map dramatically reduces the time to think of an

efficient path and delivery.

1.1 Object design trade-offs

Complexity vs. Usability
It is better to have complex processes to save time, but Pigeon’s Map needs to be used by

as many users as possible. Anyone with minimum knowledge about technology should be

able to use it easily. Usability is more critical for Pigeon’s Map.

Cost vs. Performance
It would be better to have a server handle pathfinding with high computational power, but we

cannot afford such servers. The device of the users will handle the pathfinding computations.

Memory vs. Maintainability
It would be good to use as low memory as possible, but finding an efficient path for multiple

destinations can be complicated. Memory is still essential but maintaining the lower time in

calculations is more critical. We will focus on maintainability on this project.

1.2 Interface documentation guidelines

We used a table format for the class interfaces such that Pascal Case is used for class
names, and the Camel Case is used for attribute and function names.

1.3 Engineering standards

We used UML [2] guidelines in previous reports for class models and scenarios. We used
the IEEE format for referencing in every report.

1.4 Definitions, acronyms, and abbreviations

UML: Unified Modeling Language

Pascal Case: Naming convention in which the first letter of every word is in capital

Camel Case: Naming convention in which the first letter of every word except the first one is in capital

2. Packages

2.1 Model
Model classes represent the data structures that we have in the server.

Name of the class ClassName

Description of the class Brief description

List of the attributes attributeName: AttributeClass

List of the functions myFunction(ClassName1, ClassName2):
ReturnTypeClass

User.java

UserSettings.java

Route.java

Warning.java

Location.java

Street.java

Database.java

2.2 Activities
These are controller classes; they extend the Activity base class from Android SDK.

3. Class Interfaces

MainActivity.java

LoginActivity.java

RegisterActivity.java

SelectAddressActivity.java

MapActivity.java

User

This class holds information for a user like settings, location, login information and routes

- username: String = “guest”
- settings: UserSettings
- warnings: List<Warning>
- location: Location
- route: route
- savedRoutes: List<Route>

+ setSettings(bool, bool, String, int, String): void
+ setSettings(UserSettings): void
+ login(String):bool
+ updateLocation(Location): bool
+ createWarning(String, Location, bool): bool

UserSettings

This class holds the list of settings for a user.

- autoLogin: bool
- savePastRoutes: bool
- loginToken: string
- maxRoutesToStore: int
- units: String

+ setAutoLogin(bool): void
+ setSavePastRoutes(bool): void
+ setLoginToken(String): void
+ setMaxRoutesToStore(int): void
+ setUnits(String): void

Route

This class represents a route.

- circular: bool
- locations: List<Location>
- length: float
- noOfLocations: int
- streets: List<Street>
- warnings: List<Warning>

+ calculate(): bool
+ addLocation(Location): void
+ removeLocation(Location): void
+ update(): bool

Warning

This class holds information for a single warning

- text: String
- user: User
- location: Location
- isPrivate: bool

+ getText(): String
+ getUser(): User
+ getLocation(): Location
+ getPrivate(): bool
+ setText(String): void
+ setUser(User): void
+ setLocation(Location): void
+ setPrivate(bool): void

Location

This class represents the coordinates of the location and street.

- xCoordinate : float
- yCoordinate : float
- street : Street

+ setXCoordinate(float) : void
+ setYCoordinate(float) : void
+ getXCoordinate() : float
+ getYCoordinate() : float

Street

This class represents the rate of the street where user’s vote.

- rate: int
- name: String

+ setRating(int): void
+ setName(String): void
+ getRating(): int
+ getName(): String

Database

This is the class that manage the connection between Client side and database.

- databaseConnectionInfo: String

+ fetchUserInfo()
+ checkLoginInfo(String, String): bool
+ addWarning(Location, String): void
+ getWarnings(Route): List<Warning>
+ getStreets(User, List<Street>): List<Street>

Activities

Map

This is a map object that hold the information about the current map

- currentRoute: Route

+ showWarningDetails(Warning): void
+ showSubmittedMessage(): void
+ update(): void
+ showCreateWarningDialog(): void
+ display(): void

MainActivity

This is the welcome screen of the application

- loginButton: Button
- registerButton: Button
- continueButton: Button

+ void onCreate(Bundle)

LoginActivity

This is UI of the login screen.

- emailTextField: EditText
- pwdTextField: EditText
- submitButton: Button
- googleButton: Button

+ void onCreate(Bundle)
+ submit():

RegisterActivity

This is the UI of the register screen.

- emailTextField: EditText
- pwdTextField: EditText
- pwdTextField2: EditText
- submitButton: Button
- googleButton: Button

+ void onCreate(Bundle)

SelectAddressActivity

This is the UI where the user will select the addresses.

- addressFieldList: List<EditText>

+ void onCreate(Bundle)

MapActivity

This is the UI where the route and map will be displayed to the user.

- map: Map
- createWarningButton: Button
- rateStreetButton: Button
- warningButtons: List<Button>
- reportButtons: List<Button>

+ void onCreate(Bundle)
+ createWarning(Warning)
+ rateStreet(Street, int)
+ reportWarning(String)

4. Glossary

Optimal Path: The most efficient path possible.

Efficient Path: A path close to the optimal way of saving time.

Destination: An address to stop by to deliver a package.

Point: Users can point to a road’s circumstances to be considered good or bad in future

searches.

Circumstances: Infrastructure or environment of the neighborhood about a road.

5. References

[1] "Pandemic increases workload, health risks for postal and delivery employees", PBS

NewsHour. [Online]. Available:

https://www.pbs.org/newshour/show/pandemic-increases-workload-health-risks-for-postal-an

d-delivery-employees. [Accessed: 12- Oct- 2020].

[2] “What is UML,” What is UML | Unified Modeling Language. [Online]. Available:

https://www.uml.org/what-is-uml.htm. [Accessed: 08-Feb-2021].

