

CS 491 Senior Design Project I

Analysis Report

Project short-name: ​Pigeon’s Map

Berdan Akyürek 21600904

Ömer Olkun 21100999

Tanay Toksoy 21703919

Abdullah Ayberk Görgün 21201986

Ekin Üstündağ 21602770

Supervisor: Özcan Öztürk

pigeon-s-map.github.io

1. Introduction 3

2. Current Systems 4

3. Proposed System 6
3.1 Overview 6
3.2 Functional Requirements 6
3.4 Pseudo Requirements 7
3.5 System Models 8

3.5.1 Scenarios 8
3.5.2 Use Case Model 12
3.5.3 Object and Class Model 13
3.5.4 Dynamic Models 14
3.5.5 User Interface and Screen Mockups 19

4. Other Analysis Elements 23
4.1. Consideration of Various Factors in Engineering Design 23
4.2. Risks and Alternatives 24
4.3. Project Plan 25
4.4. Ensuring Proper Teamwork 26
4.5. Ethics and Professional Responsibilities 27
4.6. Planning for New Knowledge and Learning Strategies 27

5. References 29

1. Introduction

Pigeon’s Map is a route planning android application project, which aims to

provide the best route for the people who have to handle more than one address to

reach in a time-saving way. In daily life or business life, most people, mostly postal

workers, may have to arrive at their final destination by visiting multiple stops. The

reason for that is the lower possibility to find the most efficient path to use, waste of

time and effort, and fuel consumption if any vehicle is used is inevitable. The

application ensures users the shortest route for their destinations. Therefore, the

waste of time, effort, and energy will be minimised by using the application.

Pigeon’s Map will have two main pages. These are the creation of the route

and the map view.

To use the application, the user must create a destination to reach, indeed.

The creation of the route page allows the determination of the addresses and the

priority for these addresses for the algorithm which the application uses. The

addresses can be added to the application in any order because the algorithm

reorders the addresses to find the best path. Regardless of the order of addresses

entered by the user, the algorithm finds the best order that the route becomes most

efficient. Also, the user selects the circular or not, and travel way option. All options

may differentiate the best path. For instance, when the circular option is on, the

application creates the best route by considering the goal destination is also the

beginning destination. In other words, travel ends at the start location. This scenario

applies to the postal workers who need to return to the post office after delivering all

packages. Another function that serves the user can do on this page is to register

or login. The application can be used without a login, but in this case, rating the

streets/roads and creating the warning messages attributes are not permitted for

the user.

The Map page contains the view of the route which the application

algorithm produces. There is a pointer that symbolises the user on the map. The

pointer moves in the map simultaneously with the move of the user. There may be

any number of warning boxes for the streets on the map. Thus, the user can get

current information about the roads around the route. This page shows the distance

between the user and the goal destination and the remaining time to the goal. Both

information is changed simultaneously with the move of the pointer/user. If the user

logged in, he/she could create a warning about the streets/roads where he/she

passes and rate these streets/roads in range 0 to 10.

2. Current Systems

Although there are a few applications like Google Maps[1], Speedy Route[2],

and MapQuest[3] which have a similar use to what we seek to achieve, they all

come short in certain features.

First of all, Speedy Route does not have a mobile application. Google Maps

offers the most extensive set of features including satellite imagery, traffic

conditions, and route planning, while the other two are more specialised in route

planning. Google Maps only calculates a route in the given order. Since it is not

possible for a user to know the best route without any calculations for multiple

locations to be visited, the user cannot give addresses in the most efficient order.

So Google Maps is not the best choice for our case. Another application that orders

the destinations most efficiently is required. Speedy Route and MapQuest apps are

mostly focused on this problem. They also change the order of the locations to be

visited to be able to find the best possible route as we will do in our project.

However, personalisations in the routes do not apply to any of these

applications. Pigeon’s Map will provide a personalised and self-improving

experience to its users. While using Pigeon’s Map, users will face a better

experience with fewer problems every day. The street rating system will help people

to meet against undesired situations by recalculating their route again. With this

system, users will rate roads and streets positively or negatively while using the

system, and the algorithm will try to offer routes that pass from desired roads

instead of undesired ones. This way, users will feel safer, and they will be safer as

well. However, none of the current systems provides similar functionality.

Moreover, by the warning system that will be provided by Pigeon’s Map, users

of the app will communicate and warn each other. This communication will create a

solidarity-based community. This community will also affect the safety of users

directly. This function is also not provided by any of the current systems.

Lastly, none of the current systems considers the priorities of the destinations.

Since this is a route planning application for mostly postal workers, there can be

some more urgent deliveries. This urgency should be a factor while calculating the

route. Pigeon’s Map will have an algorithm that will also consider this situation and

create the best route.

Due to these shortcomings in these existing applications, we decided to build

Pigeon’s map to solve problems of current systems and provide the best

experience to the users. Also, since we will use a map API similar to Google Maps,

our application will include most properties of the current systems.

3. Proposed System

3.1 Overview

Pigeon’s map is a mobile application in Android[4] devices that users can

find efficient routes with multiple stops to specific locations. The user can enter

multiple addresses, and priority levels can be set for each address. The user can

leave notes and grade a street to share an opinion or have an idea about the road.

Finding an efficient route to save time can be hard when there are many

stops. A postal worker should choose which address to stop by first, find an efficient

path to that address and repeat it for the rest of the addresses. The postal workers

usually take an educated guess to find a route, but computer-assisted calculations

could always improve it. Pigeon’s Map aims to provide an efficient path to the user

to save time and fuel.

3.2 Functional Requirements

● Users will be able to create an account.

● Users will be able to login with their existing accounts.

● Users will be able to enter multiple addresses.

● There will be a function to set priority for each address.

● There will be a street voting system.

● Users will be able to change/remove their grades on the street.

● Users will be able to create notes to warn others.

● Users will be able to delete their notes.

● Users will be able to report any abusive content.

 ​3.3 Nonfunctional Requirements

● The software will be a mobile application.

● The software will work on Android devices.

● The software will be open source.

● The software will be easy to use.

● The software will be user friendly.

● The software will work fast.

● The software will be efficient.

● The software will be secure from outside attacks.

● Some functions require an internet connection.

3.4 Pseudo Requirements

● Java will be used as a programming language.

● Calculations will be operated on the client’s device.

● The application will be ad-free

● The interface language will be English only in the release.

● Android Studio[5] environment will be used for development.

3.5 System Models

3.5.1 Scenarios

Scenario 1

Register with email

Actors:​ User

Entry Condition:​ The user taps the register button on the main screen.

Exit Condition:​ User finishes registration process.

Main Flow:

1. User taps on the “register” button.

2. Register page opens.

3. The user chooses to register via email by tapping the button “Register with

email”.

4. The user enters his/her email address, desired username, and password.

5. The user taps the “register” button.

6. The username that the user wants is already in use. So the user gets a

warning, and the system asks him/her to change it.

7. The user types a new username.

8. The user taps the “register” button.

9. The user sees a page that asks for email verification.

10.The user types the verification code that he/she gets via email.

11.The user taps the “submit” button.

12.The registration process is finished.

Scenario 2

Register with a Google account

Actors:​ User

Entry Condition:​ The user taps the “register” button on the main screen.

Exit Condition:​ User finishes registration process.

Main Flow:

1. User taps on the “register” button.

2. Register page opens.

3. The user chooses to register via Google by tapping the button “Register with

Google”.

4. The user chooses a Google account.

5. The user sees a page to enter a username.

6. The user types a new username.

7. The user taps the “register” button.

8. The registration process is finished.

Scenario 3

Login with a Google account

Actors: ​User

Entry Condition:​ The user taps the “login” button on the main screen.

Exit Condition:​ The user finishes the login process.

Main Flow:

1. The user chooses to login via Google by tapping the button “Login with

Google”.

2. The user chooses a Google account.

3. Login process finishes.

Scenario 4

Login with email

Actors:​ User

Entry Condition:​ The user taps the “login” button on the main screen.

Exit Condition:​ The user finishes the login process.

Main Flow:

1. The user chooses to login via email by tapping the button “Login with email”.

2. The user types his/her email and password into required text fields.

3. The user taps the “login” button.

4. The user gets a warning that there is not an account with the information

provided.

5. The user checks and retypes the information.

6. The user taps the “login” button.

7. Login process finishes.

Scenario 5

Create a new path

Actors:​ User

Entry Condition:​ The user taps the “new path” button on the main screen.

Exit Condition:​ The user creates the route.

Main Flow:

1. The user taps the “new path” button.

2. The user selects the travel way (walking or car).

3. The user enters an address for each location he/she will visit.

4. The user chooses priority for each location.

5. The user taps the “finish” button.

6. The user sees a map with the suggested route.

Scenario 6

Create a warning

Actors:​ User

Entry Condition:​ The user wants to warn others about something about the route.

Exit Condition:​ The user creates a warning.

Main Flow:

1. The user taps the “create a warning” button.

2. The user types the message.

3. The user presses the submit button.

Scenario 7

Rate a location

Actors:​ User

Entry Condition:​ The user wants to rate a street for a better experience for later use.

Exit Condition:​ User rates the street.

Main Flow:

1. The user taps the “rate this location” button.

2. The user chooses the rate between 1-10.

3. The user taps the “submit” button.

Scenario 8

Report a warning

Actors​: User

Entry Condition:​ The user wants to report abusive content on user warnings.

Exit Condition:​ The user reports the warning.

Main Flow:

1. The user taps on the warning.

2. The user taps the report button.

3. The user presses the submit button.

3.5.2 Use Case Model

Figure 1: UML Use case diagram for Pigeon’s Map

3.5.3 Object and Class Model

Figure 2: Class diagram for Pigeon’s Map

3.5.4 Dynamic Models

Figure 3: Page State Diagram for Pigeon’s Map

Figure 4: Activity Diagram for Pigeon’s Map

Figure 5: Sequence Diagram for creating a route

Figure 6: Sequence Diagram for the login process

Figure 7: Sequence Diagram for rating a street

Figure 8: Sequence Diagram for reporting a warning

Figure 9: Sequence Diagram for creating a warning

3.5.5 User Interface and Screen Mockups

Figure 10: Mockup for login screen Figure 11: Mockup for register screen

These two pages are for login and registration. First-time users may choose to

register, and users with an existing account may choose to log in. The app works without

login required, but users who do not log in are unable to use some abilities. Login and

register are possible via email or Google account.

Figure 12: Mockup to create route screen Figure 13: Mockup for the map screen

Users use the screen in Figure 12 to create a new route. If the user is already logged

in, Register and Login buttons at the top will not appear. The user needs to select

addresses and the priority for each of them on this screen. Addresses with higher priority

will be visited earlier. Also, the user has to set settings for the root at the top of the screen.

If the user needs to return to the starting point after the travel, he/she needs to activate the

“Circular” option. Also, the user needs to select “Walk” or “Vehicle” according to the way

they will visit each place.

After the calculation, the user will see a map with the suggested route, like in Figure

13. Users will see this screen during travel. Users also can see any warnings created by

other users around the way. Users can choose to report these warnings if they are

inappropriate. Also, they can choose to create a warning themselves or to rate a street.

Figure 14: Mockup for login required warning Figure 15: Mockup for reporting a warning

If the user tries to use a function that requires login, a warning like in Figure 14 will

appear. From this warning, the user can choose to register, login, or abandon doing this

operation. If the user decides to register or login, he/she will resume the route.

If the user is logged in and wants to report a warning, a page like a Figure 15 will

appear to avoid taps by accident. If the user chooses to report, the warning information will

move to the reported warnings database and will be removed by administrators if it is

really against the rules.

Figure 16: Mockup for rating a street Figure 17: Mockup for creating a warning

A user can choose to rate a street. These ratings will be used for the later routes for

that particular user. The algorithm will try to use the roads with higher ratings instead of

streets with lower ratings. This rating system will provide users with a better experience. If

a logged-in user tries to rate a street, a dialogue like a Figure 16 will appear. The user

should tap the “Rate” button after providing a rating number.

Finally, users can create their own warnings for other users. Users who want to

create a warning will see a dialogue like Figure 17. In this dialogue, users should provide a

text to share with other users.

4. Other Analysis Elements

4.1. Consideration of Various Factors in Engineering

Design

With the Covid-19 outbreak, public health has become one of the biggest

concerns in the world. In our case, to address the needs of public health, our

application can only decrease the probability of people, mostly postal workers,

getting the virus. This can be achieved. As well as minimising the time, we can

optimise the route to select emptier streets. The idea is that the worker will have

less human contact by going through empty streets resulting in less likelihood of

getting the virus. The effect of public health factors is 5.

To address the needs of public safety, our application can decrease the

probability of a traffic accident. This can be done by choosing safe routes. The

users of the application can determine the safeness of a route. After using the

route, users can rate the safety, and maybe other aspects of the route as well. By

continuously rating, users can change the status of the route continually. The effect

of public safety factors is 4.

Besides, global factors affect our application. Since we can not launch our

own satellite and use images from it, we are constrained to use globally available

sources such as Google Maps. Therefore, any error in these sources will directly

affect our calculations. The effect of global factors is 8.

Table 1: Factors that can affect analysis and design.

4.2. Risks and Alternatives

One of the risks is, not much likely, that the users do not have a Google

account or do not want to use their Google account to register and log into our

application. In this case, users can not use our application. If this happens, our plan

B is to register and log them into our system via their email.

Another risk is, since our primary focus is on postal workers, that the user

might want a circular route in which the start location and end location are the

same. In this case, there may be more efficient routes than the non-circular route

calculation. If this happens, our plan B is to have a circular route option that also

considers the route back to the start location as well.

 Effect level Effect

public health 5 selecting empty routes

public safety 4 rating of routes

global 8 correctness of results

Table 2: Risks

4.3. Project Plan

Table 3: List of work packages

 Likelihood Effect on the project B plan summary

no Google account not much user can not log in

to the system

register with an

email

circular route probably all the time the non-circular

calculation might not

be efficient

circular route option

WP# Work package title Leader Members involved

WP1 Analysis Berdan Akyürek Ömer Olkun, Ekin
Üstündağ,Tanay
Toksoy, Abdullah
Ayberk Görgün

WP2 High level design Tanay Toksoy Ömer Olkun, Ekin
Üstündağ, Abdullah
Ayberk Görgün,
Berdan Akyürek

WP1​: Analysis

Start date: ​7.11.2020 ​End date​:21.11.2020

Leader​: Berdan Akyürek
Members involved​:Ömer Olkun, Ekin Üstündağ,Tanay Toksoy, Abdullah Ayberk Görgün

Objectives​: Analyze the details of the problem. All relevant ​issues must be addressed.

Tasks
Task 1.1: ​All the diagrams of the models should be created.
Task 1.2:​ All the sections of the analysis report should be written.

Table 4: work package 1

Table 5: work package 2

4.4. Ensuring Proper Teamwork

To ensure proper teamwork, we use Github[6] for codes. This way, we can

track the contribution of every group member. If somebody is not doing his work, we

can see this from Github and warn each other. To see other members’ commits

makes other members more motivated. The ease of use provided by Github lets us

spend less time on synchronisation problems.

Similarly, we use Google Docs[7] for reports. This way, we can monitor the logs and

figure out which member had how much workload and we can synchronise our

work simultaneously.

Deliverables
D1.1: ​Analysis report

WP2​: High level design

Start date: ​21.11.2020 ​End date​: 27.12.2020

Leader​: Tanay Toksoy
Members involved​:Ömer Olkun, Ekin Üstündağ,Berdan Akyürek, Abdullah Ayberk
Görgün

Objectives​: A high-level design of the solution.

Tasks
Task 2.1: ​All the diagrams of the models should be created.
Task 2.2:​ All the sections of the high-level design report should be written.
Task 2.3: ​A demo of the application should be done.
Task 2.4: ​A presentation of the project should be done.

Deliverables
D2.1: ​An​ ​Analysis report
D2.2: ​A​ ​Demo of the application
D2.3: ​A presentation of the project

Face to face meetings and similar activities are not being used because of

the pandemic. So we prefer to use online communication tools such as

Whatsapp[8] and Discord[9] to connect easily. This way, we can share work equally

and remind our responsibilities to each other. We ask and communicate with each

other to help others or receive help from others. We keep every group member

accountable this way.

4.5. Ethics and Professional Responsibilities

One of the responsibilities that we have is not to plagiarise. That is, do

everything on our own and give references when we use outside sources. We have

not plagiarised since the start of the project. We did everything on our own and

gave references for the external sources we use in our reports. We will not

plagiarise in the future either.

Another responsibility that we have is the protection of personal data. Since

we ask for users' emails, we should protect this information. Besides, we must not

use this information outside the range of the application as well.

4.6. Planning for New Knowledge and Learning

Strategies

Some of us do not have much experience in developing an Android

application. So they will need to learn to develop an Android application. To learn,

they will use online courses, and also the group members knowing developing an

Android application can help them.

Also, we need more information and experience in some fields such as

teamwork, database, and server usage, object-oriented programming, API usage,

algorithm, and software efficiency. Knowledge from previous courses that we took

before may not be enough for a project like this. So we will use appropriate learning

strategies to conclude our project correctly. We will receive help from other team

members when needed. Every group member will help others with the fields that

they are experienced in.

Also, every group member should use self-learning strategies for faster

development. Online documentation, tutorials, and books may be helpful in this

context.

With the development of our project, we may face new problems, and while

searching for solutions, we may need new knowledge that is not planned before. In

this case, we will keep learning with appropriate learning strategies and stick to

plan. In short, learning will be an integral part of our project.

5. References

[1]"Google Maps", ​Google Maps​. [Online]. Available: https://www.google.com/maps.

[Accessed: 20- Nov- 2020].

[2] Speedy Route, "Speedy Route - The Delivery Route Planner",

Speedyroute.com​. [Online]. Available: https://www.speedyroute.com/.

[Accessed: 20- Nov- 2020].

[3]"Official MapQuest - Maps, Driving Directions, Live Traffic", ​Mapquest.com​.

[Online]. Available: https://www.mapquest.com/. [Accessed: 20- Nov- 2020].

[4]"Android | The platform pushing what’s possible", ​Android​. [Online]. Available:

https://www.android.com/. [Accessed: 20- Nov- 2020].

[5]"Download Android Studio and SDK tools | Android Developers", ​Android

Developers​. [Online]. Available: https://developer.android.com/studio.

[Accessed: 20- Nov- 2020].

[6]"GitHub: Where the world builds software", ​GitHub​. [Online]. Available:

https://github.com/. [Accessed: 20- Nov- 2020].

[7]"Google Docs: Free Online Documents for Personal Use", ​Google.com​. [Online].

Available: https://www.google.com/docs/about/. [Accessed: 20- Nov- 2020].

[8]"WhatsApp", ​WhatsApp.com​. [Online]. Available: https://www.whatsapp.com/.

[Accessed: 20- Nov- 2020].

[9]"Discord | Your Place to Talk and Hang Out", ​Discord​. [Online]. Available:

https://discord.com/. [Accessed: 20- Nov- 2020].

